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ON THE GLOBAL STABILITY, EXISTENCE AND NONEXISTENCE OF
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Abstract. The existence and number of limit cycles is an important problem in the study
of ordinary differential equations and dynamical systems. In this work, we consider 2-
dimensional predator-prey system and, using Poincaré-Bendixson theorem and LaSalle’s in-
variance principle, present some new necessary and some new sufficient conditions for the
existence and nonexistence of limit cycles of the system. These results extend and improve
the previous results in this subject. Local or global stability of the rest points of a system
is also an important issue in the study of the systems. In this paper, a sufficient condition
about global stability of a critical point of the system will also be presented. Our results are
sharp and are applicable for predator-prey systems with the functional response which is the
function of prey and predator. At the end of the manuscript, some examples of well-known
predator-prey systems are provided to illustrate our results.
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1. Introduction
Consider the following autonomous planar system

dx

dt
= rx

(
1− x

k

)
− yh(x, y) = P (x, y)

dy

dt
= y(µh(x, y)−D) = Q(x, y),

x(0) > 0, y(0) > 0,

(1.1)

where x and y are the prey and predator population, respectively; r, k, µ and D are positive
constants and h is a given functional response which satisfies in the following conditions.

(A1) h(0, y) = 0 for y > 0,

(A2)
∂h(x, y)

∂x
> 0, for x, y > 0,

(A3)
∂h(x, y)

∂y
< 0, for x, y > 0,

(A4) lim(x,y)→(+∞,0) h(x, y) = C <∞.
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Limit cycles have been used to model the behavior of a great many real-world oscillatory
systems. The study of limit cycles was initiated by Henri Poincaré (1854-1912). The existence
and number of limit cycles for 2-dimensional systems are related to Hilbert’s 16th problem
and oscillatory problems in mathematical models (see [1-6, 9-14] and reference cited therein).

First, note that (0, 0) and (k, 0) are two critical points of system (1.1). If D/µ ∈ Range h
and D/µ < h(k, 0), then this system has a third critical point E∗ = (x∗, y∗) where

h(x∗, y∗) =
D

µ
and y∗ =

rx∗(1− x∗
k )

h(x∗, y∗)
.

This critical point is located in the first quadrant {(x, y)|x > 0, y > 0} if 0 < x < k. When
assumption 0 < D/µ < h(k, 0) fails, system (1.1) has no critical point in the first quadrant
and hence no limit cycles of (1.1) exist.

Many authors have studied the nonexistence problem for limit cycles and some results are
provided in [11, 12]. Recently, Aghajani and Moradifam in [1] considered system (1.1) with
h(x, y) = ϕ(x) and presented the following theorem about the nonexistence of limit cycles of
system (1.1) with functional response ϕ(x).

Theorem 1.1. Suppose that (A1), (A2) and (A4) hold, D

µ
∈ Range ϕ, and D

µ
< ϕ(k).

Moreover,
ϕ′(0) ≤ r

y∗
.

Let

ψ(x) =
ϕ(x)

x
, F (x) =

rx(1− x
k )

ϕ(x)
.

If one of the following conditions holds:

(i) ψ′′(x) has no zero in (0, k),
(ii) F ′(0) > 0 and ψ′′(x) has at most one zero in (0, k),

then system (1.1) with h(x, y) = ϕ(x) has no limit cycles.

In [13], Moghadas gave the following theorem for the nonexistence of limit cycles of system
(1.1) with h(x, y) = ϕ(x).

Theorem 1.2. Assume (A1), (A2) and (A4) hold. Also assume that ϕ′′(x) > 0 for x > 0,
D
µ ∈ Range ϕ and D

µ < ϕ(k). Furthermore, there is a unique constant 0 < α < 1 such that
ϕ′′′(x) < 0 for 0 < x < α, ϕ′′′(α) = 0 and ϕ′′′(α) > 0 for x > α. If 2ϕ′(0) + ϕ′′(0) < 0 and
r

ϕ′(0)
− y∗ ≥ 0, then

(1.2) 2x∗ + x∗(1− x∗)
ϕ′(x∗)

ϕ(x∗)
> 1,

is a necessary and sufficient condition for the nonexistence of limit cycles of system (1.1) with
h(x, y) = ϕ(x).

The following theorem in [5] guarantees the boundedness of the solutions of system (1.1).
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Theorem 1.3. Suppose that (A1)-(A4) hold. Let

Γ =

{
(x, y) ∈ R2

+ | 0 ≤ x ≤ k, 0 ≤ x+
y

µ
≤ 1

k
+
M

µ

}
,

where M = max{rx(1− x
k ) : x ∈ [0, k]}. Then,

1- Γ is positively invariant,
2- for all (x0, y0) ∈ R2

+,

(x(t), y(t)) → Γ as t→ ∞.

In the next section, our main results will be presented. The results are simpler and more
explicit than the results in [1, 13] and can be applied for the predator-prey systems with the
functional response of two variables.

2. Main Results
In this section, using Poincaré-Bendixson theorem and LaSalle’s invariance principle, a nec-

essary condition and some sufficient conditions will be given about the existence and nonex-
istence of limit cycles for system (1.1). Moreover, the global stability of positive equilibrium
of system (1.1) will be presented.

The following theorem gives a sufficient condition for system (1.1) to have limit cycle.

Theorem 2.1. Assume that (A1)-(A4) hold. System (1.1) has at least one limit cycle if

µy∗
∂h

∂y
(x∗, y∗)− y∗

∂h

∂x
(x∗, y∗) + r(1− 2x∗

k
) > 0,

h(x∗, y∗)
∂h

∂x
(x∗, y∗) + r(1− 2x∗

k
)
∂h

∂y
(x∗, y∗) > 0.

(2.1)

Proof. The Jacobian matrix of the linearized system at E∗ is as follows. r(1− 2x∗
k

)− y∗
∂h

∂x
(x∗, y∗) −h(x∗, y∗)− y∗

∂h

∂y
(x∗, y∗)

µy∗
∂h

∂x
(x∗, y∗) µy∗

∂h

∂y
(x∗, y∗)

 .
Therefore, the characteristic polynomial of this matrix is as

P (z) = z2 +

(
µy∗

∂h

∂y
(x∗, y∗)− y∗

∂h

∂x
(x∗, y∗) + r(1− 2x∗

k
)

)
z

+ µy∗

(
∂h

∂x
(x∗, y∗)h(x∗, y∗) +

∂h

∂y
(x∗, y∗)r(1−

2x∗
k

)

)
.

The roots of characteristic polynomial have positive real parts if and only if (2.1) holds. Thus,
E∗ is unstable if (2.1) holds. It is easy to check that the stable and unstable manifolds at
(0, 0) are on the y-axis and x-axis, respectively. Also, the unstable manifold at (k, 0) is in
the first quadrant. By Theorem 1.3, the positive solutions of (1.1) are eventually uniformly
bounded. Since E∗ is unstable, from Poincaré-Bendixson theorem, the ω-limit set of each
orbit initiating at a point in the first quadrant is a limit cycle and the proof is complete. □

In the following, a necessary condition for the nonexistence of limit cycles for system (1.1)
will be given.
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Theorem 2.2. Let
F (x, y) =

rx(1− x
k )

h(x, y)
.

Suppose that (A1)-(A4) hold. If system (1.1) has no limit cycles, then

(2.2) ∂F

∂x
(x∗, y∗)− µ

∂F

∂y
(x∗, y∗) ≤ 0.

Proof. By calculating the following derivatives

(2.3) ∂F

∂x
(x∗, y∗)− µ

∂F

∂y
(x∗, y∗) =

µy∗
∂h

∂y
(x∗, y∗)− y∗

∂h

∂x
(x∗, y∗) + r(1− 2x∗

k
)

h(x∗, y∗)
,

and using Theorem 2.1, it can be concluded that
∂F

∂x
(x∗, y∗)− µ

∂F

∂y
(x∗, y∗) ≤ 0,

if system (1.1) has no limit cycles. This completes the proof. □

As mentioned, condition (2.2) is a necessary condition for system (1.1) about the nonex-
istence of limit cycles. In the following, some sufficient conditions are provided for system
(1.1) about the nonexistence of limit cycles. To state our results, consider functions ψ(x, y)
and F (x, y) as follows:

ψ(x, y) =
h(x, y)

x
, F (x, y) =

rx(1− x
k )

h(x, y)
.

Hereafter assume that the conditions of Theorem 2.1 hold. In the following, a sufficient
condition for the global stability of E∗ for system (1.1) will be given. The condition says that
if the horizontal line y = y∗ divides the prey isocline y = F (x, y) into two parts, then E∗ is
globally asymptotically stable in positive cone.

Theorem 2.3. Suppose that (A1)-(A4) hold. If
(2.4) (x− x∗)(F (x, y)− y∗) < 0 for 0 < x < k, x ̸= x∗,

then the solutions of (1.1) satisfy
(2.5) lim

t→∞
x(t) = x∗ and lim

t→∞
y(t) = y∗.

Proof. Define the Lyapunov function

V (x, y) =

∫ x

x∗

(µh(η, y)−D)

h(η, y)
η +

∫ y

y∗

ψ − y∗
ψ

dψ.

The time derivative of V (x, y) along the positive solutions of system (1.1) can be written as

V̇ = ẋ

(
µh(x, y)−D

h(x, y)

)
+ ẏ

(
y − y∗
y

)
=

(
rx

(
1− x

k

)
− yh(x, y)

)(
µh(x, y)−D

h(x, y)

)
+

(
y(µh(x, y)−D)

)(
y − y∗
y

)
.

Since
(x− x∗)(µh(x, y)−D) > 0 for x ̸= x∗,
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then

V̇ = (µh(x, y)−D)

(
rx(1− x

k )

h(x, y)
− y∗

)
= (µh(x, y)−D)(F (x, y)− y∗) ≤ 0.

Hence, the equilibrium E∗ is stable. On the other hand, V̇ = 0 if and only if x = x∗, y = y∗.
Let M be the largest invariant set in

D = {(x, y) | V̇ (x, y) = 0} = {E∗}.

We have that M = {E∗}. The global stability of E∗ or (2.5) follows from Theorem 1.3 and
LaSalle’s invariance principle [7, 8]. □

Remark 2.4. If the prey isocline y = F (x, y) is nonincreasing on 0 < x < k, then (2.4) holds.
Thus E∗ is globally asymptotically stable or system (1.1) has no limit cycles.

In the following, sufficient conditions for the nonexistence of limit cycles for system (1.1)
will be given by using Dulac-Bendixson Theorem.

Theorem 2.5. Suppose that (A1)-(A4) hold. Also, assume that

(2.6) ∂ψ

∂x
− µ

∂ψ

∂y
≥ 0,

on Ω =
{
(x, y)| 0 < x < k, 0 < y <∞}. Then, system (1.1) has no limit cycles.

Proof. Choosing Dulac function D(x, y) =
1

xy
for system (1.1) in Ω we have

∂(DP )

∂x
+
∂(DQ)

∂y
= − r

ky
−
(
∂ψ

∂x
− µ

∂ψ

∂y

)
< 0 ( ̸= 0).

Thus, by Dulac-Bendixson theorem, there is no closed orbit in Ω. This implies that the
interior critical point E∗(x∗, y∗) is globally asymptotically stable or system (1.1) has no limit
cycles. □

Theorem 2.6. Suppose that (A1)-(A4) hold. Also, assume that

(2.7) ∂F

∂x
≤ 0

on Ω =
{
(x, y)| 0 < x < k, 0 < y <∞}. Then, system (1.1) has no limit cycles.

Proof. For system (1.1), choosing Dulac function D(x, y) =
1

yh(x, y)
, we have

∂(DP )

∂x
+
∂(DQ)

∂y
=

1

y

∂F

∂x
+D

∂h
∂y

h(x, y)2
< 0 ( ̸= 0)

in Ω. By Dulac-Bendixson theorem, there is no closed orbit in Ω. This implies that the
interior critical point E∗(x∗, y∗) is globally asymptotically stable or system (1.1) has no limit
cycles. □

The following corollaries are applicable for system (1.1) with functional response of one
variable. Let h(x, y) = ϕ(x). In this case F (x) = rx(1−x

k
)

ϕ(x) and ψ(x) = ϕ(x)
x .
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Corollary 2.7. Suppose that
(2.8) ψ′(x) ≥ 0

on Ω =
{
(x, y)| 0 < x < k, 0 < y <∞}. Then, system (1.1) with h(x, y) = ϕ(x) has no limit

cycles.

Corollary 2.8. Suppose that
(2.9) F ′(x) < 0

on Ω =
{
(x, y)| 0 < x < k, 0 < y <∞}. Then, system (1.1) with h(x, y) = ϕ(x) has no limit

cycles.

Remark 2.9. Notice that in the case of h(x, y) = ϕ(x), Theorems 2.2, 2.3 and Corollary 2.8
are reduced to Theorems 2.1, 2.2 and Corollary 2.1 in [1], respectively.

3. Examples
In this section, some examples are provided to illustrate our results. These examples show

that how our results are simply applicable to some well-known predator-prey systems.

Example 3.1. Consider system (1.1) with

h(x, y) =
αx

1 + ax+ by
, α, a, b > 0.

This system is said to have functional response of Beddington-DeAngelis type. For this system

ψ(x, y) =
α

1 + ax+ by
.

If µ ≥ a

b
, then

∂ψ

∂x
− µ

∂ψ

∂y
=

α(µb− a)

(1 + ax+ by)2
≥ 0.

Thus, by Theorem 2.5 this system has no limit cycles.

Example 3.2. Consider system (1.1) with the functional response of Crowley-Martin type,

h(x, y) =
αx

1 + ax+ by + abxy
, α, a, b > 0,

and assume that a ≤ 1

k
. Then,

F (x, y) =
r

α

(
1− x

k

)
(1 + ax+ by + abxy).

Thus,
∂F

∂x
=
r

α

(
(a− 1

k
) + by(a− 1

k
)− 2

a

k
x(1 + y)

)
.

If a ≤ 1

k
, then

∂F

∂x
(x, y) < 0,

in the first quadrant. Therefore, Theorem 2.6 implies that this system has no limit cycles.
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Example 3.3. Consider system (1.1) with the functional response of one variable,

ϕ(x) =
x2

(x+ a)(x+ b)
, a, b > 0.

Assume that k ≤
√
ab. Then,

ψ(x) =
x

(x+ a)(x+ b)
.

Thus,

ψ′(x) =
ab− x2(

(x+ a)(x+ b)
)2 ≥ 0.

If k ≤
√
ab, then

ψ′(x) ≥ 0

on Ω =
{
(x, y)| 0 < x < k, 0 < y < ∞}. Therefore, Corollary 2.7 implies that this system

has no limit cycles.

Remark 3.4. By comparing Example 3.3 in our work and Example 3.2 in [1], which both
represent the same systems, it can be seen that with much simpler conditions than in [1], the
nonexistence of limit cycles of system (1.1) with h(x, y) = ϕ(x) has been obtained.

Example 3.5. Consider the following system
dx

dt
= x

(
1− x

)
− 7

2

xy

1 + x+ y
= P (x, y)

dy

dt
= y(

7

2

x

1 + x+ y
− 1) = Q(x, y).

(3.1)

It is easy to check that (
1

2
,
1

4
) is an equilibrium point of (3.1) in the region {(x, y) : 0 < x <

1, y > 0}. We have
F (x, y) =

2

7
(1 + y − x2 − xy).

By using Theorem 2.1, it can be concluded that
∂F

∂x
(
1

2
,
1

4
)− ∂F

∂y
(
1

2
,
1

4
) = −1

2
< 0.

Thus, we have the necessary condition for the nonexistence of a limit. On the other hand,
the variational matrix of system (3.1) at (

1

2
,
1

4
) takes the form −1

4

∂h

∂x
(
1

2
,
1

4
) −h(1

2
,
1

4
)− 1

4

∂h

∂y
(
1

2
,
1

4
)

1

4

∂h

∂x
(
1

2
,
1

4
)

1

4

∂h

∂y
(
1

2
,
1

4
)

 =


−5

14

−6

7

5

14

−1

7

 ,
where h(x, y) = 7

2

x

1 + x+ y
. From the above matrix, we concluded that point (1

2
,
1

4
) is locally

asymptotic stable. By using Dulac-Bendixson theorem with D(x, y) =
1

xy
, we have

∂(DP )

∂x
+
∂(DQ)

∂y
= −1

y
< 0.
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This implies that the interior critical point (
1

2
,
1

4
) is globally asymptotically stable or system

(3.1) has no limit cycles (Fig. 1).

Figure 1. Phase portrait of system (3.1)

Example 3.6. Consider system
dx

dt
= rx

(
1− x

k

)
− βxy

x+ y

dy

dt
= y

(
µ
βxy

x+ y
−D),

(3.2)

with β < r and let B =
βk

r
. For this system, the prey isocline is

y =
kx− x2

B − k + x
.

Thus,

y′ =
−x2 + 2(k −B)x+ k(B − k)

(B − k + x)2)
.

The prey isocline is nonincreasing on 0 < x < k if

(3.3) − x2 + 2(k −B)x+ k(B − k) < 0.

The relation (3.3) holds if
∆ = 4B(B − k) < 0,

or β < r. Thus, E∗ = (x∗, y∗) is globally asymptotically stable or system (3.2) has no limit
cycles.

Remark 3.7. Theorems 1.1 and 1.2 are just applicable for the systems with functional
responses of one variable. Therefore, they are not applicable to Examples 3.1, 3.2 and 3.5
since the functional response of the systems in these examples are defined in terms of two
variables.
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The authors in [1] and [13], under many complicated conditions including some inequal-
ities and other conditions on the derivatives of the functional response, gave necessary and
sufficient conditions for the nonexistence of limit cycles of system (1.1). In this work, much
simpler explicit conditions have been given for the nonexistence of limit cycles of the system.
Moreover, the predator-prey system with the general functional response with two variables
has been studied here and some results of [1] have been extended.

4. Conclusion
In this work, using Poincaré-Bendixson theorem and LaSalle’s invariance principle, we

have presented some new necessary and some new sufficient conditions for the existence and
nonexistence of limit cycles of the 2-dimensional predator-prey system. A sufficient condition
about the global stability of the critical point of the system has also been presented. The
obtained results are applicable for predator-prey systems with functional response which is
the function of both prey and predator. Some examples of well-known predator-prey systems
have been provided to illustrate the results.
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